If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2-14k+13=0
a = 3; b = -14; c = +13;
Δ = b2-4ac
Δ = -142-4·3·13
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{10}}{2*3}=\frac{14-2\sqrt{10}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{10}}{2*3}=\frac{14+2\sqrt{10}}{6} $
| n2+ 6.44= 9 | | -x-12=19 | | 4y+2-3=8 | | 12=5+9/w | | 127=6+11z | | 6(2x+4)-(3x-7)=48 | | Y=-0.013+0.018x | | 11+5x=-7-2x | | 5x+15=4x+30 | | k-3-4=10 | | 4+45/x=9 | | 2(2u-3)+5u=4(u-5)-2u | | 9w-3=78 | | 7.1x-8=22 | | (7+z)(4z+2)=0 | | 6x+16=8x-8 | | 93=j/3+1 | | 1/3(x-10)=5 | | 14=6+96/w | | 9(x-2)=3(x+7)-3 | | -2x+9=7x-18 | | 3-(x=4)=11 | | 3y-6+2y=7(y-1) | | 19d−18d=17 | | 33=w/2-9 | | -6n+21=12n0015 | | x=(6x-7)(5x+8) | | c+1/2=1 | | x-3.2=-3.7 | | 12(x-9)=-50.4 | | 7(3x+1)-4=87 | | 4(x-3)+2(-x+3)=24 |